国产精品成人网站,亚洲欧美精品在线,色一情一乱一伦,又大又紧又粉嫩18P少妇

服務咨詢

產(chǎn)品求購企業(yè)資訊會展供應

發(fā)布詢價單
儀表網(wǎng)>產(chǎn)品庫>實驗儀器>生物儀器>生命科學儀器>高通量小型植物光合表型測量系統(tǒng)
  • 高通量小型植物光合表型測量系統(tǒng)

高通量小型植物光合表型測量系統(tǒng)

參考價
面議
具體成交價以合同協(xié)議為準
  • 型號
  • 品牌
  • 所在地北京市
  • 更新時間2023-07-24
  • 廠商性質(zhì)其他
  • 入駐年限1
  • 實名認證已認證
  • 產(chǎn)品數(shù)量70
  • 人氣值131
產(chǎn)品標簽

客服在線 索取相關資料 在線詢價

聯(lián)系方式: 查看聯(lián)系方式

聯(lián)系我們時請說明是 儀表網(wǎng) 上看到的信息,謝謝!

同類產(chǎn)品
慧諾瑞德(北京)科技有限公司(PhenoTrait)是一家以植物表型為核心的AIoT+DT技術公司,是國家企業(yè)、中關村企業(yè)和全國科技型中小企業(yè)。公司利用智能感知、多源多維多譜視覺技術、人工智能、自動化和物聯(lián)網(wǎng)技術,為大范圍、高通量獲取與農(nóng)作物品質(zhì)、產(chǎn)量、抗性相關的植物表型及環(huán)境數(shù)據(jù)提供系統(tǒng)解決方案,為智慧育種、智慧種植和產(chǎn)業(yè)鏈賦能。表型組是基因組之后生命科學研究和產(chǎn)業(yè)應用的又一戰(zhàn)略制高點。慧諾瑞德,用表型之“瞳”,筑科研之基,拓產(chǎn)業(yè)之路,賦農(nóng)業(yè)之慧。 公司是國際植物表型學會(IPPN)會員,創(chuàng)始人韓志國博士是IPPN執(zhí)委會成員、工業(yè)分會副主席(2020-2024),也是我國“植物表型”這一細分市場的創(chuàng)建者。公司是亞太植物表型國際會議(APPPcon)發(fā)起單位和China Plant Phenotyping Network (CPPN)發(fā)起單位。公司先后榮登2020國際未來農(nóng)業(yè)食品榜生物農(nóng)業(yè)TOP20。和2022國際未來農(nóng)業(yè)食品榜種業(yè)創(chuàng)新TOP20。 公司旗下的學術公眾號“植物表型資訊”,已成為華人植物表型圈影響力的公眾號;公司參與發(fā)起的“百博智慧大講堂”,已成為國內(nèi)的線上學術講座平臺之一。
點擊展示更多內(nèi)容
高通量小型植物光合表型測量系統(tǒng)PhenoMate是一款對小型植物自動進行頂部高通量光合表型高清成像(600萬像素)測量的系統(tǒng),配備6種濾光片進行葉綠素熒光成像和反射光譜成像
高通量小型植物光合表型測量系統(tǒng) 產(chǎn)品詳情

 

高通量小型植物光合表型測量系統(tǒng)PhenoMate是一款對小型植物自動進行頂部高通量光合表型高清成像(600萬像素)測量的系統(tǒng),配備6種濾光片進行葉綠素熒光成像和反射光譜成像。能夠獲得用于表型分析的可見光成像、用于光合作用分析的葉綠素熒光成像、在近紅外區(qū)的NIR反射成像RNIR、反映葉綠素含量的葉綠素指數(shù)成像RChl,以及反映花青素含量的花青素指數(shù)成像RAnt。

 

PhenoMate包括帶成像系統(tǒng)的直角坐標機器人系統(tǒng)、帶NAS的控制電腦系統(tǒng)、預裝分析軟件的分析電腦系統(tǒng)(配備24英寸顯示器、鍵盤、鼠標)等。

 

PhenoMate配備4.5m x 2m或6m x 3m的培養(yǎng)桌用于放置植物進行測量及培養(yǎng),配備直角坐標機器人用于在x-、y-和z-方向上自動移動成像系統(tǒng)。

  • 對于4.5m x 2m的系統(tǒng)而言,可以放置78盆(冠層240mm x 240mm)到1248盆(冠層60mm x 60mm)植物;
  • 對于6m x 3m的系統(tǒng)而言,可以放置190盆(冠層240mm x 240mm)到3040盆(冠層60mm x 60mm)植物。

 

PhenoMate的成像單元每次可以測量多達16株植物(冠層60mm x 60mm ),而這16株植物都可以進行獨立分析。用這種方法大大提高了測量效率,做到了高通量植物表型測量。

 

PhenoMate系統(tǒng)于2020年入駐大名鼎鼎的紐約古根海姆博物館!
 

 

技術原理

葉綠素a熒光作為光合作用研究的探針,是研究各種逆境脅迫(干旱、高溫、低溫、營養(yǎng)缺失、污染、病害等)對植物影響的強大工具,亦被廣泛用于篩選同一植物品種的不同基因型。葉綠素a熒光不僅能反映光能吸收、激發(fā)能傳遞和光化學反應等光合作用的原初反應過程,而且與電子傳遞、質(zhì)子梯度的建立及ATP合成和CO2固定等過程有關。幾乎所有光合作用過程的變化均可通過葉綠素a熒光反映出來,而熒光測定技術不需破碎細胞,不傷害生物體,因此通過研究葉綠素a熒光來間接研究光合作用的變化是一種簡便、快捷、可靠的方法。針對葉綠素a熒光的測量方法和參數(shù)分析方法已經(jīng)成為光合作用研究的一個重要領域。

 

功能特性

  • 利用直角坐標機器人實現(xiàn)X-Y-Z軸自動移動
  • 測量范圍4.5m x 2m或6m x 3m
  • 帶兩套潮汐式灌溉水培系統(tǒng)
  • 能夠進行葉綠素熒光成像、葉綠素指數(shù)成像、花青素指數(shù)成像和可見光成像
  • 配備控制電腦和分析電腦
  • 配備控制軟件和分析軟件
  • 配備NAS(網(wǎng)絡附屬存儲)系統(tǒng)

 

大名鼎鼎的彭博社為瓦赫寧根大學的PhenoMate系統(tǒng)(瓦大專用名稱為Phenovator)拍攝的視頻

 

主要應用領域

  • 擬南芥和其它小型植株的光合作用和表型研究
  • 光合作用機理研究,全葉片和整株植物的光合作用測量
  • 環(huán)境脅迫對植物的影響
  • 基因型篩選、突變株篩選
  • 植物功能基因組學研究
  • 脅迫損傷的早期檢測
  • 植物病理學、毒理學、環(huán)境科學研究

 

主要技術參數(shù)

  • 成像面積:24 cm x 24 cm
  • 光照面積:30 cm x 30 cm
  • 相機傳感器類型:CCD
  • 相機分辨率:600萬像素,即2440 x 2440像素
  • 光譜范圍:350-950 nm
  • 鏡頭類型:高質(zhì)量百萬像素鏡頭
  • 光纖濾光片輪:6種高質(zhì)量光學干涉濾光片,步進電機驅(qū)動
  • 直角坐標機器人:全自動控制,定位精度100 um
  • 培養(yǎng)桌尺寸: 4.5m x 2m或6m x 3m ,可定制化設計。
  • IT硬件:相機和直角坐標機器人由兩套獨立的電腦系統(tǒng)控制,并由一個帶NAS系統(tǒng)的服務器電腦控制整套設備。NAS系統(tǒng)用于數(shù)據(jù)通訊、數(shù)據(jù)存儲、數(shù)據(jù)備份,配備4 Tb硬盤進行鏡像數(shù)據(jù)存儲。

 

利用PhenoVation光合表型成像技術發(fā)表的部分文獻

  1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
  2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
  3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
  4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
  5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
  6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
  7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
  8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
  9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
  10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
  11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
  12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
  13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
  14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
  15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
  16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
  17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
  18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
  19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
  20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
  21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
  22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
  23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
  24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) c*tion as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
  25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
  26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
  27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
  28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
  29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
  30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
  31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
  32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
  33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
  34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
  35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
  36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
  37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
  38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
  39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
  40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
  41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221
熱門產(chǎn)品
產(chǎn)品名稱參考價地區(qū)公司名稱更新時間 
雙層全溫恒溫恒濕振蕩培養(yǎng)箱生命科學儀器 ¥19800 常州市 常州金壇精達儀器制造有限公司 2024-08-20 在線詢價
離心機轉(zhuǎn)子特征 生命科學儀器 面議 常州市 常州金壇精達儀器制造有限公司 2024-04-08 在線詢價
微型手提式真空泵 吸引器 生命科學儀器 ¥1300 上海市 上海精勝科學儀器有限公司 2023-11-24 在線詢價
光照培養(yǎng)箱 GXZ-600 生命科學儀器 ¥5800 寧波市 寧波江南儀器廠 2022-12-07 在線詢價
臺式吸引器 微型真空泵 生命科學儀器 ¥1430 上海市 上海精勝科學儀器有限公司 2023-11-24 在線詢價
微型臺式真空泵 吸引器 生命科學儀器 ¥910 上海市 上海精勝科學儀器有限公司 2023-11-24 在線詢價
免責申明

所展示的信息由會員自行提供,內(nèi)容的真實性、準確性和合法性由發(fā)布會員負責,儀表網(wǎng)對此不承擔任何責任。儀表網(wǎng)不涉及用戶間因交易而產(chǎn)生的法律關系及法律糾紛,糾紛由您自行協(xié)商解決

友情提醒 :本網(wǎng)站僅作為用戶尋找交易對象,就貨物和服務的交易進行協(xié)商,以及獲取各類與貿(mào)易相關的服務信息的平臺。為避免產(chǎn)生購買風險,建議您在購買相關產(chǎn)品前務必確認供應商資質(zhì)及產(chǎn)品質(zhì)量。過低的價格、夸張的描述、私人銀行賬戶等都有可能是虛假信息,請采購商謹慎對待,謹防欺詐,對于任何付款行為請您慎重抉擇!如您遇到欺詐等不誠信行為,請您立即與儀表網(wǎng)聯(lián)系,如查證屬實,儀表網(wǎng)會對該企業(yè)商鋪做注銷處理,但儀表網(wǎng)不對您因此造成的損失承擔責任!

關于我們|網(wǎng)站導航|本站服務|會員服務|網(wǎng)站建設|特色服務|旗下網(wǎng)站|友情鏈接|在線投訴|興旺通|供應信息

儀表網(wǎng)-儀器儀表行業(yè)“互聯(lián)網(wǎng)+”服務平臺

Copyright ybzhan.cn All Rights Reserved法律顧問:浙江天冊律師事務所 賈熙明律師ICP備案號:浙B2-20100369-24

客服熱線:0571-87756399,87759942加盟熱線:0571-87756399展會合作:0571-87759945客服郵箱:873582202@qq.com 投稿郵箱:ybzhan@qq.com

網(wǎng)站客服:服務咨詢:對外合作:儀表采購群: 儀表技術群:

版權(quán)所有©浙江興旺寶明通網(wǎng)絡有限公司


提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息: