概述
以孔板、噴嘴和文丘里管為代表的差壓式流量計已統(tǒng)領(lǐng)流量領(lǐng)域近百年。盡管人們從未間斷對它們進行了大量的研究和改善工作,但是由于先天結(jié)構(gòu)上的缺陷,其本身固有的一些缺點,至今沒有得到很好的解決,實際應用效果也不理想。如:流出系數(shù)不穩(wěn)定,線性差,重復性不高,從而影響到準確度不高。如孔板入口銳角這個關(guān)鍵部位易磨損,前部易積污,壓力損失大,范圍度(量程比)小,特別是十分苛刻的直管段要求在實際使用中很難滿足。
為克服上述這些不足,人們曾研制出1/4圓孔板、錐形入口孔板、偏心孔板、楔形孔板等諸多非標準節(jié)流件,試圖解決這些問題。但是這些節(jié)流件同標準節(jié)流件一樣都沒有突破“流體中心收縮”這個模式。只是或多或少改善了局部某一個問題,并沒有從根本上解決所有問題。
塔型(形)流量計的出現(xiàn),打破了沿襲近百年的結(jié)構(gòu)模式,使得節(jié)流式差壓儀表產(chǎn)生了“質(zhì)的飛躍”。 塔型(形)流量計的重大突破在于“變流體在管道中心收縮為管道邊壁收縮。”即利用同軸安裝在管道中心V形錐體,近使流體從中心逐漸收縮到管道內(nèi)邊壁而流過V形錐體,通過測量該V形錐體前后的壓差來求得流量。正是這個邊壁收縮的結(jié)構(gòu),使其具有一系列其它差壓儀表無法相比的優(yōu)點,克服了以孔板為代表的傳流差壓儀表的諸多缺點,可以說這是流量儀表一場革命性的變化,從此揭開了差壓式儀表嶄新的一面。
測量原理
*的性能
具有良好的準確度(≤0.5%)和重復性(≤0.1%)。
具有較寬的量程比(10:1~15:1)。
對流體有整流功能,因此只需要極短的直管段(前1~3D后0~1D)。
具有自清潔功能,可測臟污和易結(jié)垢流體。
節(jié)流件關(guān)鍵(不含任何電子部件),因此耐高溫、高壓、耐腐蝕、不怕震動等。
可測流體的種類非常廣泛(液、氣、蒸汽),流量范圍寬(從微小流量~到大流量),適應的管道(DN15~DN3000)。
*的性能是如何實現(xiàn)的
(1)對流體的均速作用
流體在管道中流動實際上是這樣一種狀態(tài),當流體流動不受任何阻礙和干擾達到充公發(fā)展狀態(tài)時,其速度分布為:越靠近管道中心流速越快,在中心處達到zui快、越靠近管壁流速越慢,在管壁處接近零。大多數(shù)流量儀表測量流量涉及到流速時,由于無法改變這種快慢不均的狀態(tài),只能忽略管道中流速有快慢之分的實際情況而假設(shè)流速是均等的。而 塔型(形)流量計由于錐形體處在管道中心,它直接把流體從高速流動的中心部位分開,使流速快的流體分別向四周流速慢的流體靠攏并拉動它們混合一起流動,這種快慢混合的結(jié)果就是:原本流速快慢的差別消失了,流體變成了真正的均勻流動。流體流速被均勻化所帶來的好處就是:測量信號真實反映了被測流體的實際值,并使得在低流速時 塔型(形)流量計前后仍能產(chǎn)生足夠準確的差壓,隨著流速的降低,這種作用更加顯著,而這種情況對于傳統(tǒng)的差壓式儀可能早已不能測量了(見圖3)
(2)具有很強的抗干擾(旋渦流)能力
大家都知道流體流動遇到阻擋物時會產(chǎn)生“旋渦流”,這就是的“卡曼旋渦”現(xiàn)象,渦街流量計就是基于這個原理工作的。同樣道理象孔板、錐開體等節(jié)流件在管道中也是阻擋物,在節(jié)流件后部除了產(chǎn)生靜壓力外必然也會產(chǎn)生旋渦流。然面這個旋渦流對于渦街流量計來講是有用的信號對于差壓式儀表來講卻是有寄存器的干擾,見(圖4)。這個干擾在節(jié)流件下流(負壓端)會產(chǎn)生“信號跳動“現(xiàn)象,它會嚴重干擾正常信號的測量。塔形的結(jié)構(gòu)是邊壁節(jié)流,節(jié)流件后部產(chǎn)生干擾流的分布是等量相反(對稱分布)而相互抵消,因此使干擾程度大大減輕。而孔板等傳統(tǒng)節(jié)流件是中心節(jié)流,產(chǎn)生的干擾流方向直接指向取壓口,嚴重干擾了測量信號,特別是小流量時干擾甚至大于測量信號而無法正常工作。經(jīng)過大量的試驗和科學檢測證明:
(3)對流體的整流功能
絕大多數(shù)流量儀表要求足夠長的前后直管段,目的就是為了使流體流動狀態(tài)成為充分發(fā)展管流以復現(xiàn)實驗條件下的流動狀態(tài)。然而這種苛刻的要求常常由于復雜的現(xiàn)場(如各種閥門、彎頭、縮徑、擴徑、泵等)而不能滿足,所帶來的結(jié)果必然是測量誤差的增大。因此,絕大多數(shù)流量儀表很難在不滿足直管段條件下取得準確的測量值。
而 塔型(形)流量計卻不同,由于它邊避節(jié)流的特殊結(jié)構(gòu),使得流體在遇到V形節(jié)流件時,被強迫按照“管壁與節(jié)流件之間由寬逐漸變窄的狹長通道”內(nèi)流動,該通道可以等效為一個管式整流器,經(jīng)過這個通道后,各種干擾流的變化為:不規(guī)范流動——被迫在規(guī)定的通道流動——變成規(guī)范流動。因此它能夠?qū)ι嫌翁幰蚋鞣N外界因素引起的不規(guī)則的流動畸變自動進行矯正整流,從而使達到測量區(qū)的流動形成了規(guī)則的流動。因此只需極短的直管段也能取得準確的測量值,由此大大減輕了用戶的工作量和投資,這是大多數(shù)流量儀表無法相比擬的。
(4)節(jié)流件耐磨損的特點
我們都知道節(jié)流式差壓儀表的測量精度是靠它的“幾何尺寸”保證的,這一點塔形與孔板是一樣的。但是由于孔板測量關(guān)鍵部位易磨損,它的測量誤差隨著使用時間在緩慢變大。而從 塔型(形)流量計的節(jié)流件結(jié)構(gòu)可以看出:其關(guān)鍵的節(jié)流邊緣是處在節(jié)流件后部的鈍角,并順著流體方向。當流體流過節(jié)流件表面和管壁間的通道時,會形成“邊界層效應”,該效應會使流體到達測量部位前,逐漸離開了節(jié)流邊緣一個微小的距離,這樣就使被測流體不與節(jié)流件關(guān)鍵部位接觸,因此就不可能有磨損情況發(fā)生,其關(guān)鍵部位的幾何尺寸(β值)就能保持*不變。所以不用重復標定也能*穩(wěn)定工作。(圖9)
(5)自清潔功能
如前所述,由于流體在靠近管壁處的流速變慢極容易使臟污物等沉淀或附著在管壁上,對于孔板等傳統(tǒng)差壓儀表還會在前面堆積。那么流體在塔形流量計流動時會是一種怎樣的情況?當流體進入測量管并流過節(jié)流件四周的通道時,由于該通道是管壁與節(jié)流件間形成的由寬逐漸變窄的通道,它博士流體流動速度高于管道其他部位并逐漸加快,在到達節(jié)流件測量的關(guān)鍵部位時流速zui快,從而對管壁、節(jié)流件表面附近形成了吹掃沖刷作用,所有臟污雜物不可能在這里停留或附著,所以不會產(chǎn)生臟污的積垢,更不存積垢死角。 塔型(形)流量計這一*的吹掃式設(shè)計,決定了它用在高爐煤氣、焦爐煤氣等臟污流體測量中,不會使粉塵、焦油等臟物在節(jié)流件和管壁附近堆積,附著及堵塞取壓孔。(圖10)
(6)強大防堵功能的技術(shù)
上述介紹的塔形流量計的自清潔功能,當流體屬于特臟型或含有大量粉塵雜質(zhì)時,常規(guī)的V 型(形)流量計有時也不能*解決,國內(nèi)外實際使用中,時有發(fā)生因堵塞取壓孔而導致測量失敗的事例。
為此飛龍公司經(jīng)過一年多的試驗已于去年研制成功三項具有中國獨立知識產(chǎn)權(quán)的技術(shù)產(chǎn)品:
具有可控加熱的 塔型(形)流量計;
具有噴涂特殊材料涂層的 塔型(形)流量計;
具有多孔取壓的 塔型(形)流量計;
于高爐、焦爐煤氣等特臟污流體流量的測量。加油*的防堵功能,該產(chǎn)品目前在國內(nèi)都處于地位。已出口“南非MITTAL STEEL NEWSASTLE 2號焦爐”項目。
(7)在設(shè)計計算上比標準節(jié)流件準確
對這個問題下面以計算孔板為例來說明。
在孔板計算中用戶必須把管道直徑“D”值提供給計算者,D參數(shù)是設(shè)計孔板的一個重要數(shù)據(jù),因此標準中對它有嚴格的規(guī)定:要求在節(jié)流件前(0~0.5)D長度上,至少取3個截面測出12個數(shù)據(jù),然后取其平均值作為D值來計算孔板。然而這個規(guī)定在實際中很難做到,因為大多數(shù)情況都是在原有的工藝管道上后安裝 塔型(形)流量計,不可能為了測量D值而停車割開管道,大多數(shù)習慣上都是以公稱直徑報給設(shè)計者(除非連同直管段一道購買加工)。我們知道管道的尺寸通常是以公稱值來標注的,而鋼管產(chǎn)品是按外徑和壁厚系列組織生產(chǎn)的。不同的壁厚可以導致同一系列的鋼管直徑相差zui大達十毫米之多,以這樣不準確D值來計算節(jié)流件,其結(jié)果就是“假值真算”,再高級的計算軟件算出來結(jié)果也是不會準確的。
塔型(形)流量計,是把測量管和連接法蘭整體焊接在一起的一個產(chǎn)品,雖然D值的要求也很嚴格,但是這個工作是由儀表制造廠家來做的。測量管是在制造廠進行準確測量或者進行機械加工來達到所要求數(shù)值,根本不需要用戶再為管道的D值是否精確而為難,用戶只要把管道的壁厚系列提供給儀表廠以便選配同系列的測量管就可以。由于塔形流量可以把D值控制的非常精確,從而避免了孔板等差壓式儀表因D值不準確而帶來的計算上的誤差。
(8)壓力損失小
塔型(形)流量計的結(jié)構(gòu)特點是流線型節(jié)流件,采用“逐漸節(jié)流方式”工作,*不同于孔板等傳統(tǒng)差壓式儀表“突然節(jié)流”的工作方式,所以它的壓力損失小,約是孔板的1/3。因此對于那些“低壓力、大流量”流體測量來講,比傳統(tǒng)差壓式儀表有很大的*性。
(9)流量計的檢定
流量計的檢定執(zhí)行中華人民共和國檢定規(guī)程:JJG640-1994“差壓式流量計檢定規(guī)程”。
技術(shù)指標及含應用范圍
準確度:±0.5%
重復性:±0.1%
量程比:10:1~15:1
直管段要求:上游1~3D 下游0~1D
雷諾數(shù):8000~1×107
適用管徑:DN15~DN3000
溫度:-50℃~550℃
公稱壓力:0~30MPa
可測介質(zhì):
氣體
煤氣(焦爐煤氣、高爐煤氣、發(fā)生爐煤氣等)
天然氣,包括含濕量5%以上的天然氣
各種碳氫化合物氣體
各種氣體,如氫、氦、氬、氧、氮等空氣,包括含水、含其它塵埃的空氣
煙道氣
蒸汽
飽和蒸氣
過熱蒸汽
液體
油類、燃料油、含水乳化油等
水,包括純凈水、污水
各種水溶液,包括鹽、堿水溶液
含油、含沙的水
其它化工液體
流量計選型
塔型(形)流量計型號由8個部位組成
流量計結(jié)構(gòu)形式示意圖
流量計尺寸
表1≤PN2.5MPa基本型外形尺寸:
公稱管徑 | L(mm) | C | 公稱管徑 | L(mm) | C |
DN15 | 170 | Φ14.5 | DN350 | 900 | M20×1.5 |
DN20 | 170 | Φ14.5 | DN400 | 1050 | M20×1.5 |
DN25 | 200 | Φ14.5 | DN450 | 1150 | M20×1.5 |
DN32 | 200 | Φ14.5 | DN500 | 1260 | M20×1.5 |
DN40 | 240 | Φ14.5 | DN600 | 1380 | M20×1.5 |
DN50 | 300 | M20×1.5 | DN700 | 1500 | M20×1.5 |
DN65 | 320 | M20×1.5 | DN800 | 1600 | M20×1.5 |
DN80 | 390 | M20×1.5 | DN900 | 1750 | M20×1.5 |
DN100 | 420 | M20×1.5 | DN1000 | 1850 | M20×1.5 |
DN125 | 500 | M20×1.5 | DN1200 | 2000 | M20×1.5 |
DN150 | 550 | M20×1.5 | DN1400 | 2200 | M20×1.5 |
DN200 | 650 | M20×1.5 | DN1600 | 2500 | M20×1.5 |
DN250 | 700 | M20×1.5 | DN1800 | 2900 | M20×1.5 |
DN300 | 750 | M20×1.5 | DN2000 | 3200 | M20×1.5 |
表2 采用防堵與基本外形尺寸:
公稱管徑 | L(mm) | C | 公稱管徑 | L(mm) | C |
| | | DN350 | 1000 | M27×3 |
| | | DN400 | 1200 | M27×3 |
| | | DN450 | 1300 | M27×3 |
| | | DN500 | 1400 | Φ48×7.5 |
| | | DN600 | 1600 | Φ48×7.5 |
| | | DN700 | 1700 | Φ48×7.5 |
| | | DN800 | 1800 | Φ48×7.5 |
DN80 | 390 | M20×1.5 | DN900 | 2000 | Φ48×7.5 |
DN100 | 480 | M20×1.5 | DN1000 | 2100 | Φ48×7.5 |
DN125 | 560 | M20×1.5 | DN1200 | 2300 | Φ48×7.5 |
DN150 | 630 | M20×1.5 | DN1400 | 2500 | Φ48×7.5 |
DN200 | 750 | M20×1.5 | DN1600 | 2800 | Φ48×7.5 |
DN250 | 800 | M20×1.5 | DN1800 | 3300 | Φ48×7.5 |
DN300 | 850 | M20×1.5 | DN2000 | 3600 | Φ48×7.5 |
表3 >PN2.5MPa基本外形尺寸:
公稱管徑 | L(mm) | C | 公稱管徑 | L(mm) | C |
DN15 | 230 | Φ14.5 | DN350 | 1120 | M27×3 |
DN20 | 240 | Φ14.5 | DN400 | 1300 | M27×3 |
DN25 | 270 | Φ14.5 | DN450 | 1350 | M27×3 |
DN32 | 290 | Φ14.5 | DN500 | 1400 | Φ48×7.5 |
DN40 | 300 | Φ14.5 | DN600 | 1480 | Φ48×7.5 |
DN50 | 390 | M20×1.5 | | | |
DN65 | 430 | M20×1.5 | | | |
DN80 | 470 | M20×1.5 | | | |
DN100 | 500 | M20×1.5 | | | |
DN125 | 540 | M20×1.5 | | | |
DN150 | 620 | M20×1.5 | | | |
DN200 | 725 | M20×1.5 | | | |
DN250 | 835 | M20×1.5 | | | |
DN300 | 900 | M20×1.5 | | | |
表4 帶測溫元件型外形尺寸:
公稱管徑 | L(mm) | C | 公稱管徑 | L(mm) | C |
DN15 | | | DN125 | 620 | M20×1.5 |
DN20 | | | DN150 | 700 | M20×1.5 |
DN25 | 400 | Φ14.5 | DN200 | 800 | M20×1.5 |
DN32 | 400 | Φ14.5 | DN250 | 1000 | M20×1.5 |
DN40 | 430 | Φ14.5 | DN300 | 1200 | M20×1.5 |
DN50 | 430 | M20×1.5 | DN350 | 1350 | M20×1.5 |
DN65 | 450 | M20×1.5 | DN400 | 1450 | M20×1.5 |
DN80 | 500 | M20×1.5 | | | |
DN100 | 570 | M20×1.5 | | | |