Ampha P20超便攜全自動(dòng)花粉活力分析儀 基于微流控阻抗流式細(xì)胞技術(shù)(IFC),能夠在微流體精確參考條件下,實(shí)現(xiàn)流動(dòng)態(tài)花粉細(xì)胞的全自動(dòng)高通量、連續(xù)、無(wú)損檢測(cè)和分析,并在測(cè)試結(jié)束時(shí)即時(shí)輸出活性花粉、失活花粉及異?;ǚ壅急?,細(xì)胞數(shù)量,濃度,大小等信息,是田間或溫室進(jìn)行花粉系統(tǒng)篩選和常規(guī)檢測(cè)的理想工具,為您的快速?zèng)Q策提供及時(shí)且可靠的數(shù)據(jù)支持。
便攜性 | 易用性 | 全自動(dòng)數(shù)據(jù)分析 |
小巧便攜 外殼堅(jiān)固 內(nèi)置電池 | 嵌入式觸屏PC 測(cè)量操作指引 自動(dòng)清洗維護(hù) | 無(wú)需數(shù)據(jù)分析經(jīng)驗(yàn) 即時(shí)輸出測(cè)量結(jié)果 快速做出決策響應(yīng) |
作物專用芯片 全自動(dòng)解決方案: 芯片編程了針對(duì)特定作物的測(cè)量、沖洗、清洗、算法和分析等過(guò)程,可實(shí)現(xiàn)全自動(dòng)測(cè)量和分析,提高測(cè)試、分析的統(tǒng)一性,增加結(jié)果的準(zhǔn)確性。 |
番茄專用芯片 | 辣椒專用芯片 | 玉米專用芯片 | 小麥專用芯 |
應(yīng)用方向
技術(shù)參數(shù)
作物專用芯片: | 玉米、小麥、番茄、辣椒,選配 |
測(cè)量體積范圍: | 2000 ~3000μl |
測(cè)量濃度范圍: | 0~1.2×10 5個(gè)cells/ ml |
采樣流量范圍: | 800 ~1500μl/ min |
適配樣品管 : | 標(biāo)準(zhǔn)5ml流式細(xì)胞管 |
儀 器 尺 寸: | 340mm×420mm × 205mm(H*W*D) |
儀 器 重 量: | 7.8Kg |
操 作 系 統(tǒng): | Linux,內(nèi)嵌式觸碰PC |
數(shù) 據(jù) 傳 輸: | Wi-Fi(IEEE 802.11ac/a/b/g/n)、USB |
藍(lán) 牙 : | 藍(lán)牙5.0/2.1 + EDR |
端 口: | 2×2.0USB |
環(huán) 境 溫 度: | -20~60°C |
環(huán) 境 濕 度: | 10%~90% |
適 用 電 源: | 24V DC ± 10 %,max. 3 A,< 90 W;支持24V可充電電池,24V車載適配器 |
自動(dòng)測(cè)量分析: | 上樣后全自動(dòng)測(cè)量、沖洗、清洗、并分析,即時(shí)輸出結(jié)果 |
疊 加 分 析: | 支持2-6次測(cè)量結(jié)果的手動(dòng)疊加分析,適用于不同處理、不同發(fā)育階段的對(duì)比 |
統(tǒng) 計(jì) 分 析: | 軟件支持多邊形門(mén)控?cái)?shù)據(jù)的統(tǒng)計(jì)分析 |
數(shù) 據(jù) 類 型: | 支持.CSV、.HTML、.PNG三種格式 |
案例分享
?優(yōu)質(zhì)高抗品系收集、篩選
高活性花粉是作物優(yōu)質(zhì)高產(chǎn)的前提,Ampha P20可幫助在育種或生產(chǎn)過(guò)程中密切關(guān)注花粉活性,在田間、溫室或?qū)嶒?yàn)室快速、精確篩選出適合繁殖發(fā)育、授粉的理想材料。
?花粉供應(yīng)鏈質(zhì)量控制
花粉具有高敏感特性,花粉活性在生長(zhǎng)、采集、儲(chǔ)存、運(yùn)輸、再水合以及授粉的各個(gè)環(huán)節(jié)極易受溫度、光照、濕度、散粉等多方面因素的影響。Ampha Z40可以提供一個(gè)標(biāo)準(zhǔn)化的測(cè)量方法,快速高效且統(tǒng)一的監(jiān)控花粉的活性狀態(tài),并優(yōu)化花粉保存和運(yùn)輸條件,以確保授粉效率。
參考文獻(xiàn)
1. Heidmann I, Schade-Kampmann G, et al (2016). Impedance Flow Cytometry: A Novel Technique in Pollen Analysis. PLoS ONE 11(11): e0165531. doi:10.1371/journal.pone.0165531.
2. Iris Heidmann and Marco Di Berardino(2017). Impedance Flow Cytometry as a Tool to Analyze Micro spore and Pollen Quality. Plant Germline Development: Methods and Protocols, Methods in Molecular Biology,vol. 1669, DOI 10.1007/978-1-4939-7286-9_25.
3. Jiemeng Xu. et al. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol Breeding: 37:58, DOI 10.1007/s11032-017-0664-2.
4. Anowarul I. Bokshi, Daniel K.Y. Tan, Richard M. Trethowan. A robust and rapid pollen viability test using impedance ?ow cytometry for high throughput screening of heat tolerant wheat (Triticum aestivum) germplasm. 2019 Agronomy Australia Conference, 25-29 August 2019.
5. Schaffasz A, Windpassinger S, Snowdon R, et al. Reproductive Cold Stress Tolerance in Sorghum F1 Hybrids is a Heterotic Trait. Agronomy, 2019, 9(9): 508.
6. Mathieu Anatole Tele Ayenan.et al. Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 2019, 9,720
7. Opitz C , Schade G , Kaufmann S , et al. Rapid determination of general cell status, cell viability, and optimal harvest time in eukaryotic cell cultures by impedance flow cytometry[J]. Applied Microbiology and Biotechnology, 2019, 103(20).
8. Canonge J, Philippot M, Leblanc C, et al. Impedance ?ow cytometry allows the early prediction of embryo yields in wheat (Triticum aestivum L.) microspore cultures. Plant Science, 2020, 300: 110586.
9. Ostermann, M., Sauter, A., Xue, Y. et al. Label-free impedance ?ow cytometry for nanotoxicity screening. Sci Rep 10, 142 (2020).
10. Daniela Impe, Janka Reitz et al. Assessment of Pollen Viability for Wheat. Frontiers in Plant Science, January 2020, Volume 10, Article 1588
11. John H. Moore et al. Quantifying bacterial spore germination by single-cell impedance cytometryfor assessment of host microbiota susceptibility to Clostridioides difficileinfection. Biosensors and Bioelectronics, Volume 166, 2020, 112440, ISSN0956-5663.
12. Lorenzo Ascari, Valerio Cristofori et al. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry. Frontiers in Plant Science, December 2020, Volume 11, Article 615922
13. Angela L. Pattison, Mohammad Nazim Uddin, et al. Use of in-situ field chambers to quantify the influence of heat stress in chickpea (Cicer arientinum). Field Crops Research. Volume 270, 2021, 108215
14. Rafiq, H.; Hartung, J.; Burgel, L.; R?ll, G.; Graeff-H?nninger, S. Potential of Impedance Flow Cytometry to Assess the Viability and Quantity of Cannabis sativa L. Pollen. Plants 2021, 10, 2739
產(chǎn)地:瑞士Amphasys